Bolton SchoolsICT

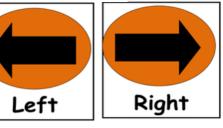
•

National Curriculum Links: KS1 Computing

- understand what algorithms are; how they are implemented as programs on digital devices; and that programs execute by following precise and unambiguous instructions
- create and debug simple programs and use logical reasoning to predict the behaviour of simple programs
- I can tell you what an algorithm is
- I can plan a simple algorithm

Computer Science Vecabulary

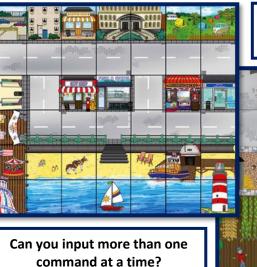
- I can give and follow commands, which include straight / turning commands one at a time.
- I can debug a simple program that is causing an unexpected outcome.
- I can break a problem down into smaller parts (decomposing)
- I can predict if a simple program will fulfil my algorithm


Computer Science Vocabulary		
computer	BBC Bitesize Computing KS1	W
science	Computer scientists design new	
	software, solve computing	
	problems and develop different	
	ways to use technology.	
computational	involves looking at a problem and	
thinking	working out a way a computer	
-	might be able to help you solve it.	Im
algorithm	a set of instructions in everyday	Alv
	language, e.g 'get ready for	Th
	school', 'go out to play'	
decompose	breaking a program down into	lft
	smaller steps	pr
debugging/	Identifying and correcting	De
deglitching	mistakes when the program	Re
0 0	doesn't work as expected	
abstraction	being able to focus on the	
	problem and ignoring detail,	
	focus on program before look	
	and feel e.g. colour, size,	
	background	
Input /	data or information that a	
output	computer receives in or displays	
•	out	
unplugged	computer science without using	
	the computer	
event blocks	all programs need an event	
	which acts like a start button	
mathematic	Directional language- backward,	
al language	left, right, angles, clockwise /	
	Anti-clockwise	В
	•	

What would be your algorithm? BeeBot starts at the beanstalk Then travels over the bridge Pauses at the straw house Finishes at tower

Important:

Always plan your program Then test your program f the out-come was not what you predicted



When planning your algorithm you need to think about: Where do I want my algorithm to start? What do I want my BeeBot to do? Does my BeeBot need to pause, change direction? Input program / test / debug

Can you use the pause command in your algorithm?

